
MODIFIED SPECTRAL SUBTRACTION USING DIFFUSIVE GAIN FACTORS 
 

Hyoung-Gook Kim 1, 2, Klaus Obermayer2, Mathias Bode1, Dietmar Ruwisch 1 
1Cortologic AG, Berlin, Germany 

2Department of Computer Science, Technical University of Berlin, Germany 

{kim, bode, ruwisch}@cortologic.com, oby@cs.tu-berlin.de 

 
 

ABSTRACT 
 

This paper presents an effective method for single channel 
noise reduction based on the spectral subtraction 
algorithm. The standard spectral subtraction algorithm 
suffers from the fact that either the noise reduction is not 
satisfactory due to intelligibility of the speech is not 
enhanced by the introduction of annoying ‘musical noise’.  
In order to prevent the musical tones it is important to find 
a balanced tradeoff between noise reduction and speech 
distortion in the processed signal. This is accomplished by 
a system based on spectral minimum detection and 
diffusive gain factors.   

 
 

1. INTRODUCTION 
 

Speech enhancement by noise removal for many 
applications, like hands-free telephoning in cars and 
speech recognition devices has become more and more 
popular. The processing required to increase both the 
communication comfort and the recognition rate of voice 
controlled systems, must suppress background noise. For 
single channel methods, spectral subtraction [1] is a 
commonly applied method, which offers the simple and 
computationally efficient tool for the suppression of an 
additive noise in a speech signal. However, its plain 
application suffers from essentially drawbacks: its noise 
estimator during speech pauses is not sufficient for the 
tracking of nonstationary noise and a subtraction rule tends 
to introduce a distortion, often called “musical noise,” that 
is sometimes more annoying than the original noise. Many 
modified forms of spectral subtraction have been 
suggested primarily with the goal of avoiding musical 
noise by “over-subtraction” of the noise spectrum [2, 3]. 

 Complete removal of all the residual noise is 
impossible in principle because the speech signal is too 
tightly interlaced with the background noise. Thus, in this 
paper, in order to achieve a balanced tradeoff between 
noise reduction and speech distortion we propose a very 

simple but highly effective real-time approach. Instead of 
the complete removal of the background noise a low level 
of naturally sounding background noise remains in the 
enhanced speech signal. This method is based on a concept 
we call “spectral minimum detection and Diffusive Gain 
Factors (DGF-Filtering)”. 
       

2. ALGORITHM DESCRIPTION 
 
A simplified block diagram of our approach is shown in 
Fig. 1. A short-time spectral power function leads to a 
simple direct way of subtracting noise from noisy speech. 
Thus, the short-time Fourier analysis is applied to the input 
signal x(t) by computing the DFT ( )TfX ,  of overlapping 
windowed frames, respectively, at time T and frequency f. 
The power spectral density ( )TfA ,  of the input signal x(t) 

is ( ) ( )2
,, TfXTfA = . The spectral weighting rule is 

performed by multiplying the magnitude spectrum 
( )TfX ,  with diffusive gain factors ( )TfF , . The diffusive 

gain factors ( )TfF ,  are calculated in a two-layer structure 
(Fig.1): minimum detection layer and diffusive gain factor 
computation layer. 
The filtered spectral values  
 

( ) ( ) ( )TfFTfXTfO ,,, ⋅=         (1) 

 
are transformed back into the time domain using Inverse 
Short-time Fourier Transformation in order to calculate the 
output signal o(t). 
 
2.1. Noise Estimation 
 
The proposed first layer called “minimum detection layer” 
estimates the present noise level by a nonlinear estimator. 
Speech pause detection of the standard spectral subtraction 
algorithm is not needed, anymore.  
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At first, the input power spectrum of each single mode is 
computed by using recursively smoothed  periodograms:  
 

( ) ( ) ( ) ( )TfATfNTfN ,11,,
~~

⋅−+−⋅= αα   (2) 

 

where α  ( 10 << α ) is a smoothing constant and ( )TfN ,
~

 
is the estimated noise power. Power spectral minimum 
values ( )TfM ,  in the minimum detection layer can be 
obtained by detecting minimum values of the estimated 

noise ( )TfN ,
~

 within windows of l  frames. In noise-free 

speech all modes are zero from time to time. If there is  a 
permanent offset in each mode it is supposed to be noise. 
The detected minimum values are computed by nonlinear 
minimum estimation function ( )( )1, −Φ TfF  (see Fig.2) 
using the diffusive gain factor ( )1, −TfF  (see Eq. (8)): 
 

if   ( ) ( )( ) ( )TfATfFTfM ,1,, >−Φ⋅  

( ) ( )
( )( )1,

,
,

−Φ
=

TfF
TfA

TfM   (3) 

 

This noise spectrum estimation is capable of 
distinguishing non-speech segments in the noisy speech 
signal. 
For all modes this noise estimation is independently 
performed by the nodes of the minimum detection layer, 
one mode by one node.  
 
2.2. Gain Computation 
 
Spectral subtraction supplies an intuitive estimate for 

( )TfX ,  using Eq. (3) as 

 
( ) ( ) ( ) ( )TfMTfKTfSTfO ,,,, ⋅−=  

  ( ) ( )TfGTfS ,, ⋅≅  (4) 

 
Using the background noise estimation preliminary gain 
factors ( )TfG ,  can be found by “diffusive gain factor 
computation layer”: 

 

( ) ( ) ( )
( )TfA

TfM
TfKTfG

,
,

,1, −= ,  (5) 

 

Fig. 1: Block scheme of the proposed noise suppression with modified spectral subtraction. 
(S(f,T): magnitude spectrum of noisy speech, A(f,T): power spectral density of noisy speech, ( )( )1, −Φ TfF : 
nonlinear minimum control factor, C(f,T): preliminary gain factor, F(f,T): diffusive gain factor, O(f,T): power 
spectral density of filtered speech) 
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where ( )TfK ,  denotes an overestimation factor using 
spectral floor constant R  ( 190.0 << R ). 
 

( ) ( )( )1,, −Φ⋅= TfFRTfK   (6) 
 

This overestimation factor must take into account the 
balanced tradeoff between reducing musical tones and 
reverberation artifacts. Although these gain factors 

( )TfG ,  lead to an effective removal of noise, there 
remains an unnaturally sounding residual noise. A more 
effective method to suppress the musical tones is 
smoothing the filter. At this point the performance is 
remarkably improved by a new processing step we call 
“spectral diffusion of gain factors” according to the Eqs. 
(7) and (8) .  First, recursive smoothing over time 
 

( ) ( ) ( ) ( )TfGTfGTfC ,11,, ⋅−+−⋅= ββ    (7) 
 
is performed, where ( )TfC ,  denotes the recursively 
smoothed gain factors and the parameter β  is  a smoothing 
constant. The time smoothing is effective in reducing 
musical noise. Nevertheless, this smoothing should not be 
too intensive. Otherwise, it can lead to reverberation 
artifacts of the enhanced speech signal. As a second step, 
the diffusive gain factor interaction of neighboring modes 
is applied to the gain factors ( )TfC ,  

 

( ) ( ) ( )
2

2 ,
,,

f
TfC

DTfCTfF
∂

∂
⋅+=    (8) 

 
where ( )TfF ,  denotes the diffusive gain factors and 
performs between zero and one. D  is the diffusion 
constant. This processing step leads to a very natural 
sound of the output signal ( )TfO ,  and helps to avoid the 
“musical tones”.  Smoothing over both time and frequency 
can be done to obtain more accurate SNR measurements 
and thus less distortion.  
For distinct subtraction rule, it is necessary to determine a 
minimum control factor. The characteristic function to 
determine the parameters ( )( )1, −Φ TfF  as a function of 

( )1, −TfF  is given in Fig. 2.  
 
 
 
 
 
 
 

3. RESULTS 

In order to visualize the functioning of the proposed noise 
suppression algorithm, a typical spectral power estimation 
and the associated gain factors are presented in Fig. 3.  

 

      
Fig. 3. (a) Spectrogram of noisy speech recorded in 
a car at a speed of 120 km/h with an SNR of about 
5 dB. 

      
Fig. 3. (b) Spectrogram of enhanced speech with 
typical spectral subtraction based on wiener filter 
rule. Because this gain factors vary temporally very 
strong they have many single peaks randomly 
distributed over the entire time-frequency plane, 
which lead to the generation of the musical tones. 

      
 

Fig. 3. (c) Spectrogram of enhanced speech based on   
diffusive gain factors In the output speech signals, 
no or only very weak musical tones are perceptible. 
 
Fig. 3  Spectrograms of noisy and enhanced speech 

Fig. 2:  Minimum Control factor ( )( )1, −Φ TfF . 
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To measure the performance of the proposed algorithm, 
the segmental signal-to-noise ratio (SNR) is computed for 
the filtered speech signals. The segmental SNR (seg.SNR) 
is defined as 

( )( )
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      (9) 

where N is the length of the original signal s(t) and o(t) is 
the filtered output. For this, car noises were artificially 
added to different portions of the database at SNRs 
ranging from clean speech over 20 dB to 0 dB in steps of 5 
dB. Ist improvement is computed as 

inout SNRsegSNRsegSNRimprove ... −=  .    (10) 

For this, car noises were artificially added to different 
portions of the database at SNRs ranging from clean over 
20 dB to 0 dB in steps of 5 dB. The results of the SNR 
improvement (improveSNR) are presented in Fig. 4. 
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Fig. 4 Segmental SNR of a speech signal corrupted 
by   car noise.  

The results of the SNR improvement for different 
noise types are given in Table 1. The rows indicate the 
SNR results before (suffix “in”) and after (suffix 
“out”) noise reduction and the columns indicate three 
noise patterns; F16 noise, factory noise and pink noise. 

 

 

 

 

 

 

 

 

 

Table 1. The SNR improvement 

To judge the performance, in a third experiment, we 
compare the recognition accuracy using the mel-scale 
frequency cepstral coefficient with and without our noise 
suppression algorithm in speaker independent isolated 
digit and continuous word recognizer automatic speech 
recognition. The proposed algorithm was used to clean up 
speech before it was passed to a speech recognition 
system, which was trained on clean speech. Test speech 
sentences were corrupted by additive car noise 
(SNR=6dB). The proposed DGF-filtering front-end was 
compared to a spectral subtraction (SS) front-end (see 
Table 2).  

 

 

 

 

 

 

 

Table 2. The results of speaker independent isolated 
digit and continuous word recognition 
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